Secure Top-k Subgroup Discovery

نویسندگان

  • Henrik Grosskreutz
  • Benedikt Lemmen
  • Stefan Rüping
چکیده

Supervised descriptive rule discovery techniques like subgroup discovery are quite popular in applications like fraud detection or clinical studies. Compared with other descriptive techniques, like classical support/confidence association rules, subgroup discovery has the advantage that it comes up with only the top-k patterns, and that it makes use of a quality function that avoids patterns uncorrelated with the target. If these techniques are to be applied in privacy-sensitive scenarios involving distributed data, precise guarantees are needed regarding the amount of information leaked during the execution of the data mining. Unfortunately, the adaptation of secure multi-party protocols for classical support/confidence association rule mining to the task of subgroup discovery is impossible for fundamental reasons. The source is the different quality function and the restriction to a fixed number of patterns – i.e. exactly the desired features of subgroup discovery. In this paper, we present a new protocol which allows distributed subgroup discovery while avoiding the disclosure of the individual databases. We analyze the properties of the protocol, describe a prototypical implementation and present experiments that demonstrate the feasibility of the approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secure Distributed Subgroup Discovery in Horizontally Partitioned Data

Supervised descriptive rule discovery techniques like subgroup discovery are quite popular in applications like fraud detection or clinical studies. Compared with other descriptive techniques, like classical support/confidence association rules, subgroup discovery has the advantage that it comes up with only the top-k patterns, and that it makes use of a quality function that avoids patterns un...

متن کامل

Fast and Memory-Efficient Discovery of the Top-k Relevant Subgroups in a Reduced Candidate Space

We consider a modified version of the top-k subgroup discovery task, where subgroups dominated by other subgroups are discarded. The advantage of this modified task, known as relevant subgroup discovery, is that it avoids redundancy in the outcome. Although it has been applied in many applications, so far no efficient exact algorithm for this task has been proposed. Most existing solutions do n...

متن کامل

Discovering Skylines of Subgroup Sets

Many tasks in exploratory data mining aim to discover the top-k results with respect to a certain interestingness measure. Unfortunately, in practice top-k solution sets are hardly satisfactory, if only because redundancy in such results is a severe problem. To address this, a recent trend is to find diverse sets of high-quality patterns. However, a ‘perfect’ diverse top-k cannot possibly exist...

متن کامل

APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery

& This paper presents a subgroup discovery algorithm APRIORI-SD, developed by adapting association rule learning to subgroup discovery. The paper contributes to subgroup discovery, to a better understanding of the weighted covering algorithm, and the properties of the weighted relative accuracy heuristic by analyzing their performance in the ROC space. An experimental comparison with rule learn...

متن کامل

Non-redundant Subgroup Discovery in Large and Complex Data

Large and complex data is challenging for most existing discovery algorithms, for several reasons. First of all, such data leads to enormous hypothesis spaces, making exhaustive search infeasible. Second, many variants of essentially the same pattern exist, due to (numeric) attributes of high cardinality, correlated attributes, and so on. This causes top-k mining algorithms to return highly red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010